Transmission Electron Microscopy and High-Resolution Electron Microscopy Study of YNi₂B₂C Thin Film on Y₂O₃-Buffered MgO

G. H. Cao,* P. Simon,† and U. Krämer

Institute of Structural Physics, TU Dresden, D-01062 Dresden, Germany

S. C. Wimbush and B. Holzapfel

IFW Dresden, P.O. Box 270016, D-01171 Dresden, Germany

Received February 26, 2003. Revised Manuscript Received October 27, 2003

An YNi₂B₂C thin film deposited on an Y₂O₃-buffered (001) MgO substrate by pulsed laser deposition has been investigated by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution electron microscopy. Cross-sectional TEM analyses show that the YNi₂B₂C film grows in the [001] direction while the Y₂O₃ buffer layer exhibits columnar growth in the [001] and [111] directions on the (001) MgO substrate, with the growth in the [001] direction being preferred. The orientation relationships of the YNi₂B₂C film, Y₂O₃ buffer layer, and MgO substrate were obtained. The primary orientation relationship YNi₂B₂C- $(001)[110] \parallel Y_2O_3(001)[100] \parallel MgO(001)[100]$, evident from X-ray analyses, was able to be confirmed in the TEM study. A hexagonal impurity phase $Y_{0.915}Ni_{4.12}B$ with lattice parameters a = 1.491 nm and c = 0.692 nm was identified at the interface between the \dot{Y}_2O_3 buffer layer and the YNi₂B₂C thin film.

Introduction

Intermetallic compounds of the series RNi₂B₂C (R: rare earth) have aroused great interest due to the interplay of magnetic ordering and superconductivity within the materials. (For a review, see for example ref 1.) Nonmagnetic members of the series (R: Y and Lu) exhibiting fairly high T_c values of 15–16 K are ideal for studying the fundamental superconducting properties of the materials, uninfluenced by magnetic effects.² Considerable research has been reported on these compounds in polycrystalline bulk form and in single crystals. On the other hand, high-quality thin films of RNi₂B₂C are of great importance for the performance of several key experiments to understand the nature of the superconductivity in this class of compounds and to explore possible applications. YNi₂B₂C thin films have been prepared by several groups, using both sputtering^{3,4} and pulsed laser deposition.^{5,6} X-ray diffraction of YNi₂B₂C thin films on MgO repeatedly shows the existence of an Y_2O_3 phase, 4,5 considered to result from

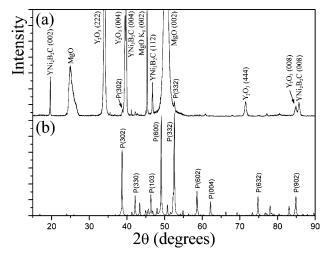
the chemical reaction of deposited yttrium with oxygen released from the MgO substrate to produce an interfacial Y2O3 layer. As a result of this uncontrolled formation of Y₂O₃, the stoichiometry of the borocarbide is affected, leading to the existence of impurity phases such as Ni₃B and YNi₄B within the films.⁷

To avoid the uncontrolled formation of the Y₂O₃ interfacial layer with the intention of eliminating these impurity phases, in the present work, an Y₂O₃ buffer layer was first deposited on the MgO substrate and the resulting Y₂O₃-buffered MgO then used as a substrate for deposition of YNi₂B₂C. The objectives of this investigation are the fabrication of an epitaxial YNi₂B₂C thin film on the Y₂O₃-buffered MgO, and the characterization of the microstructure of the thin film by transmission electron microscopy (TEM) and high-resolution electron microscopy (HREM). Such a study will expand the synthetic realm of borocarbide thin films, providing a better understanding of their growth processes and the relationship between their microstructure and macroscopic physical properties.

Experimental Section

The Y_2O_3 (206, Ia3, a = 1.0608 nm) buffer layer was prepared by pulsed laser deposition from elemental yttrium (99.9% purity) onto an (001) MgO (225, Fm3m, a = 0.4212 nm)substrate held at 700 °C in a 0.5 mbar oxygen atmosphere. The incident energy density on the target was $\sim 3 \text{ J} \cdot \text{cm}^{-2}$ at a laser pulse repetition rate of 5 Hz. The Y₂O₃-buffered MgO was then used as the substrate in a subsequent process during which an YNi₂B₂C (139, *I*4/*mmm*, a = 0.3533 nm, c = 1.0566

^{*} To whom correspondence should be addressed. Tel: +49 351 4633 4749. Fax: +49 351 4633 7048. E-mail: ghcao@physik.tu-dresden.de.


Current address Max-Planck-Institute for Chemical Physics of

Solids, D-01187 Dresden, Germany.
(1) Müller, K.-H.; Narozhnyi, V. N. Rep. Prog. Phys. 2001, 64, 943.
(2) Häse, K.; Wimbush S. C.; Paschen, S.; Holzapfel, B. IEEE Trans. Appl. Supercond. 2001, 11, 3836.
(3) Arisawa, S.; Hatano, T.; Hirata, K.; Mochiku, T.; Kitaguchi, H.;

Fujii, H.; Kumakura, H.; Kadowaki, K.; Nakamura, K.; Togano, K. *Appl. Phys. Lett.* **1994**, *65*, 1299.

<sup>Appl. Phys. Lett. 1994, 63, 1299.
(4) Andreone, A.; Iavarone, M.; Vaglio, R.; Manini, P.; Cogliati, E. Appl. Phys. Lett. 1996, 69, 118.
(5) Wimbush, S. C.; Häse, K.; Schultz, L.; Holzapfel, B. J. Phys.: Condens. Matter 2001, 13, L355.
(6) Grassano, G.; Marrè, D.; Pallecchi, I.; Ricci, F.; Siri, A. S.; Ferdeghini, C. Supercond. Sci. Technol. 2001, 14, 117.</sup>

⁽⁷⁾ Reibold, M.; Wimbush, S. C.; Holzapfel, B.; Krämer, U. J. Alloys Compd. 2002, 347, 24.

Figure 1. θ –2 θ X-ray (Co $K\alpha$) diffraction patterns of (a) the YNi₂B₂C/Y₂O₃/MgO sample and (b) an Y_{0.915}Ni_{4.12}B polycrystal (calculated).

nm) thin film was deposited at 750 $^{\circ}\text{C}$ under ultrahigh vacuum, exactly as described in ref 5.

The superconducting transition temperature of the thus fabricated YNi₂B₂C thin film was measured inductively to be 14.2 K, with a transition width of 0.7 K. X-ray diffraction in θ –2 θ geometry was used to obtain an integral measure of the phases present in the sample. TEM bright-field imaging, electron diffraction, and energy-dispersive X-ray (EDX) analyses of the sample were performed using a Philips CM200Twin electron microscope equipped with a LaB₆ electron source, operated at an acceleration voltage of 200 kV. The HREM images were obtained in a Philips CM200 FEGST-Lorentz electron microscope equipped with a field emission gun, also operated at 200 kV. Cross-sectional samples were prepared by a standard technique involving cutting and then gluing face to face before mechanical grinding and polishing, dimpling, and ion milling to perforation.

Results and Discussion

X-ray Diffraction Analysis of the YNi₂B₂C/Y₂O₃/ **MgO Sample.** The θ -2 θ X-ray diffraction pattern of the sample is shown in Figure 1(a). The Y_2O_3 buffer layer shows both [001] and $[\check{1}11]$ oriented growth similar to results previously reported8,9 for Y2O3 films deposited on (001) MgO substrates. The YNi₂B₂C film is predominantly [001] oriented although a weak (112) peak is also visible, suggesting the presence of a small randomly oriented volume fraction. The weaker peaks in Figure 1a, indexed as P(hkl), result from an impurity phase of $Y_{0.915}Ni_{4.12}B$, to be discussed in detail below.

TEM and HREM Characterization of the Y₂O₃ **Buffer Layer.** A bright-field TEM image of the sample is shown in Figure 2a, revealing a sharp interface between the columnar grown Y₂O₃ buffer layer and the MgO substrate. The selected area diffraction pattern (SADP) of the interface (Figure 2b) indicates that the interface region of Y2O3 comprises crystallites of differing orientations. Figure 2c is the SADP of a singlecrystalline region in the Y₂O₃ buffer layer along the [100] zone axis. Figure 2d is the central dark-field TEM image taken from the (002) spot of Figure 2c, highlighting the [001] oriented grains of the Y₂O₃ buffer layer,

B.; Desfeux, R. Chem. Mater. 2000, 12, 3139.

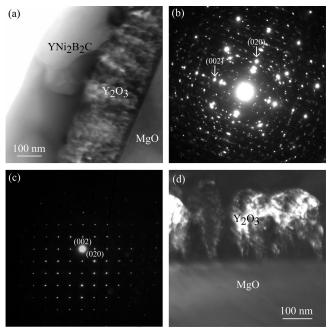
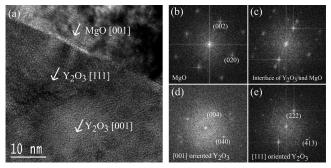
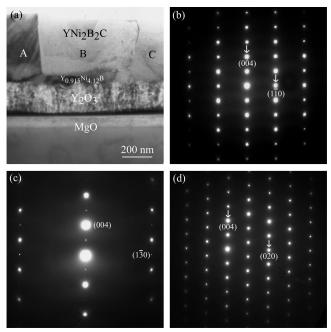
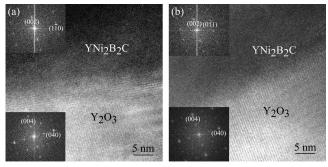



Figure 2. (a) Bright-field TEM image of the sample. (b) SADP of the interface between Y2O3 and MgO. Indexed spots (and corresponding spots of higher order) originate from MgO; the others are from Y₂O₃. (c) SADP of a single-crystalline region of Y₂O₃ along the [100] zone axis. (d) Dark-field TEM image taken from the (002) spot of (c), highlighting the [001] oriented grains of Y2O3.

Figure 3. (a) HREM image of the interface region of Y₂O₃ and MgO. Selected area FFTs of (b) MgO, (c) the interface of MgO and Y₂O₃, (d) [001] oriented Y₂O₃, and (e) [111] oriented Y_2O_3 .


which are seen to grow preferentially to the exclusion of other, less-preferred orientations.

To determine the in-plane orientation of Y₂O₃ in the buffer layer, HREM imaging of the interface region was carried out with the result shown in Figure 3a. Two distinct Y₂O₃ grains are clearly visible. The fast Fourier transforms (FFTs) of the parts of the image corresponding to each grain, as well as the substrate, and the interface region, are shown in Figure 3b-e. After indexing, it is clear to see that the Y₂O₃ grows with [001] and [111] directions perpendicular to the (001) MgO substrate. Thus, the HREM results are in good agreement with the X-ray diffraction results shown in Figure 1a. The relationships between MgO substrate and Y₂O₃ buffer layer obtained from the FFTs are Y₂O₃(001)[100] || MgO(001)[100] and $Y_2O_3(111)[1\bar{1}0] || MgO(001)[1\bar{1}0] \rangle$ the same as those reported previously^{7,8} for this system.


TEM Characterization of the YNi₂B₂C Thin Film. Figure 4a is a bright-field TEM image showing the

⁽⁸⁾ Gaboriaud, R. J.; Pailloux, F.; Pacaud, J.; Renault, P. O.; Perrière, J.; Huignard, A. *Appl. Phys. A* **2000**, *71*, 675.

(9) Korzenski, M. B.; Lecoeur, P.; Mercey, B.; Chippaux, D.; Raveau,

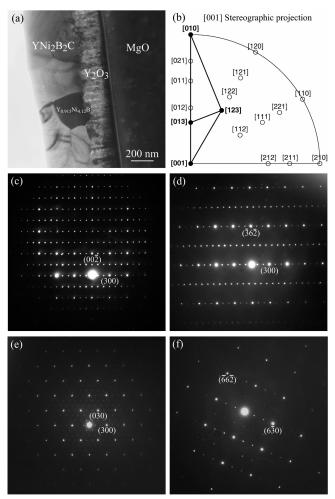


Figure 4. (a) Bright-field TEM image showing differently oriented grains of YNi_2B_2C . SADPs showing YNi_2B_2C along (b) [110] (grain A), (c) [310] (grain B), and (d) [100] (grain C) zone axes.

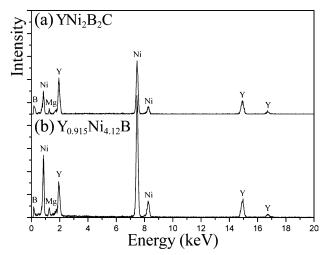


Figure 5. HREM images of the interface region of the Y_2O_3 buffer layer and YNi_2B_2C grains (a) A and (b) C.

YNi₂B₂C film also comprising differently oriented grains. Panels b-d of Figure 4 are the SADPs of these different grains along the [110], [310], and [100] zone axes, showing in each case that the YNi₂B₂C grows [001] oriented (again in agreement with the X-ray results of Figure 1a) but with several different in-plane orientations. Close examination of the TEM image shows that grain B is not growing directly on the Y2O3 buffer, but rather upon a grain of another phase (labeled Y_{0.915}-Ni_{4.12}B), formed at the interface. This phase was then the subject of further investigation, below. Panels a and b of Figure 5 are the HREM images of the interface region of the YNi₂B₂C grains and the Y₂O₃ buffer layer. The orientation relationships between YNi₂B₂C and Y₂O₃ buffer layer obtained from the FFTs for these grains are $YNi_2B_2C(001)[110] \parallel Y_2O_3(001)[100]$ and $YNi_2B_2C(001)[100] || Y_2O_3(001)[100]$. The first of these is consistent with X-ray texture measurements (not shown) performed on this sample, indicating that this is the predominant orientation of YNi₂B₂C. The second in-plane orientation is a common occurrence arising due to the very close lattice match to Y2O3 in this orientation.

Figure 6. (a) Bright-field TEM image showing a large $Y_{0.915}Ni_{4.12}B$ grain. (b) [001] stereographic projection of $Y_{0.915}Ni_{4.12}B$ showing the rotation route under TEM. SADPs along the (c) [010], (d) [013], (e) [001], and (f) [123] zone axes.

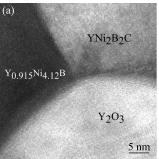


Figure 7. EDX spectra of (a) YNi_2B_2C and (b) the $Y_{0.915}Ni_{4.12}B$ grain of Figure 6.

TEM Characterization of an Y_{0.915}**Ni**_{4.12}**B Impurity Phase.** Figure 6a is a bright-field TEM image showing a larger grain of the impurity phase (labeled $Y_{0.915}$ Ni_{4.12}B), again found bordering on the Y_2O_3 buffer. EDX analyses were performed (Figure 7), comparing the impurity phase with the YNi₂B₂C phase. The EDX spectrum of the impurity suggests a Ni-rich compound

comprising the elements Ni, Y, and B. (The Mg seen in both spectra originates from the MgO substrate during ion milling.) The Y/Ni ratios, which can be reliably extracted from the scans, lie close to 1:2 for YNi₂B₂C and 1:4 for the impurity. Because the SADP of the impurity grain proved incompatible with the patterns of known compounds such as YNi₄B, the sample was tilted through a wide range of angles (Figure 6b) to obtain SADPs useful in determining its crystal structure. From these patterns (Figure 6c-f), we deduce that it has a hexagonal structure with lattice parameters a = 1.491 nm and c = 0.692 nm. YNi₄B is one compound in the Y-Ni-B system having a hexagonal structure (191, *P6/mmm*), but a much shorter *a* lattice parameter, $a = 0.4977 \pm 0.0004$ nm and $c = 0.6942 \pm 0.0005$ nm.¹⁰ Kuz'ma and Khaburskaya reported¹¹ that the Y-Ni-B system can form a series of ternary borides, including a hexagonal "YNi₄B" phase with lattice parameters a $= 1.489 \pm 0.005$ nm and $c = 0.691 \pm 0.002$ nm, in agreement with our observation. They considered this YNi₄B to be a superstructure of the other. However, no detailed information such as atomic coordinates is available. Belger et al. reported12 the full structural information of the phase Y_{0.915}Ni_{4.12}B, having matching lattice parameters, also considering this to be a superstructure of YNi₄B.

The calculated X-ray diffraction pattern for Y_{0.915}Ni_{4.12}B is shown in Figure 1b. Comparing this with Figure 1a, it is seen that in the YNi₂B₂C/Y₂O₃/MgO sample the strong peaks P(332) and P(302) of Y_{0.915}Ni_{4.12}B are visible although the P(600) peak is not easily distinguished, possibly due to overlapping by the strong substrate peak. Therefore, based on the crystal structure, lattice parameters, and chemical composition analysis of the impurity phase, we conclude it to be Y_{0.915}Ni_{4.12}B. The weak X-ray diffraction peaks resulting from Y_{0.915}Ni_{4.12}B indicate a very low volume fraction of Y_{0.915}Ni_{4.12}B in the sample. That this phase was always found bordering on the Y₂O₃ buffer is an indication that it results from the same process that leads to larger amounts of impurity phases in films without buffer layers, i.e., reaction of deposited yttrium to form Y₂O₃, leading to a deficit of yttrium and resultant formation of Ni-rich phases. Figure 8a is the HREM image of the intersection region of Y_{0.915}Ni_{4.12}B, YNi₂B₂C, and Y2O3 buffer layer. The FFTs of the parts of the image corresponding to each individual grain are shown in Figure 8b-e. These indicate that there is no well-

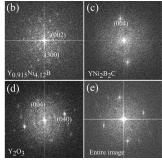


Figure 8. (a) HREM image of the intersection region of $Y_{0.915}Ni_{4.12}B$, YNi_2B_2C , and Y_2O_3 . FFTs of (b) $Y_{0.915}Ni_{4.12}B$, (c) YNi₂B₂C, (d) Y₂O₃, and (e) the entire image.

defined orientation relationship of the Y_{0.915}Ni_{4.12}B to either the Y₂O₃ buffer layer or the YNi₂B₂C film.

Conclusions

YNi₂B₂C thin films deposited on Y₂O₃-buffered (001) MgO substrates were successfully fabricated by pulsed laser deposition. In this manner, it proved possible to greatly reduce the volume fraction of impurity phases formed during deposition. TEM and HREM investigations of the cross-sectional YNi₂B₂C/Y₂O₃/MgO sample indicate that YNi₂B₂C grows in the [001] direction, while the Y₂O₃ buffer layer exhibits columnar growth in both [001] and [111] directions, with the [001] growth appearing to be preferred. The Y2O3 buffer layer and MgO substrate have the orientation relationships $Y_2O_3(001)[100] \parallel MgO(001)[100] \text{ and } Y_2O_3(111)[1\overline{10}]$ || $MgO(001)[1\bar{1}0]$, while the YNi_2B_2C film and Y₂O₃ buffer layer have the orientation relationships $YNi_2B_2C(001)[110]$ $Y_2O_3(001)[100]$ $YNi_2B_2C(001)[100] \mid\mid Y_2O_3(001)[100]$. Taking into account the preferential growth of the [001] oriented Y_2O_3 , and the predominance of one particular in-plane orientation of YNi₂B₂C observed in X-ray, the sample as a whole can best be described by the orientation relationship $YNi_2B_2C(001)[110]$ || $Y_2O_3(001)[100]$ MgO(001)[100]. A small remaining volume fraction of the hexagonal impurity phase Y_{0.915}Ni_{4.12}B having lattice parameters a = 1.491 nm and c = 0.692 nm has been identified by TEM analysis.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft as part of SFB463, "Rare earth transition metal compounds: structure, magnetism and transport". The authors thank H. Müller for preparation of the samples for TEM. Helpful discussions with A. Belger are gratefully acknowledged.

CM031044K

⁽¹⁰⁾ Niihara, K.; Katayama, Y.; Yajima, S. Chem. Lett. 1973, 613. (11) Kuz'ma, Y. B.; Khaburskaya, M. P. Inorg. Mater. 1975, 11,

⁽¹²⁾ Belger, A.; Zahn, G.; Wehner, B.; Paufler, P.; Graw, G.; Behr, G. J. Alloys Compd. 1999, 283, 26.